5,513 research outputs found

    Axial motion and scalar transport in stretched spiral vortices

    Get PDF
    We consider the dynamics of axial velocity and of scalar transport in the stretched-spiral vortex model of turbulent fine scales. A large-time asymptotic solution to the scalar advection-diffusion equation, with an azimuthal swirling velocity field provided by the stretched spiral vortex, is used together with appropriate stretching transformations to determine the evolution of both the axial velocity and a passive scalar. This allows calculation of the shell-integrated three-dimensional spectra of these quantities for the spiral-vortex flow. The dominant term in the velocity (energy) spectrum contributed by the axial velocity is found to be produced by the stirring of the initial distribution of axial velocity by the axisymmetric component of the azimuthal velocity. This gives a k(-7/3) spectrum at large wave numbers, compared to the k(-5/3) component for the azimuthal velocity itself. The spectrum of a passive scalar being mixed by the vortex velocity field is the sum of two power laws. The first is a k(-1) Batchelor spectrum for wave numbers up to the inverse Batchelor scale. This is produced by the axisymmetric component of the axial vorticity but is independent of the detailed radial velocity profile. The second is a k(-5/3) Obukov-Corrsin spectrum for wave numbers less than the inverse Kolmogorov scale. This is generated by the nonaxisymmetric axial vorticity and depends on initial correlations between this vorticity and the initial scalar field. The one-dimensional scalar spectrum for the composite model is in satisfactory agreement with experimental measurement

    First Record of \u3ci\u3eHippodamia variegata\u3c/i\u3e (Coleoptera: Coccinellidae) in Illinois, U.S.A., and Relation to Its Other Midwestern Collection Records

    Get PDF
    Hippodamia variegata (Goeze) (Coleoptera: Coccinellidae) is an Afro-Eurasian lady beetle first discovered in North America near Montreal, Canada, in 1984. Subsequent records of H. variegata have occurred over a gradually expanding area radiating from the initial detection site and also include a disjunct record from British Columbia. Here, we report the first Illinois specimen of H. variegata, collected in 2004, and discuss this in relation to previous reports of H. variegata in North America

    Dynamic Normalization for Compact Binary Coalescence Searches in Non-Stationary Noise

    Get PDF
    The output of gravitational-wave interferometers, such as LIGO and Virgo, can be highly non-stationary. Broadband detector noise can affect the detector sensitivity on the order of tens of seconds. Gravitational-wave transient searches, such as those for colliding black holes, estimate this noise in order to identify gravitational-wave events. During times of non-stationarity we see a higher rate of false events being reported. To accurately separate signal from noise, it is imperative to incorporate the changing detector state into gravitational-wave searches. We develop a new statistic which estimates the variation of the interferometric detector noise. We use this statistic to re-rank candidate events identified during LIGO-Virgo's second observing run by the PyCBC search pipeline. This results in a 7% improvement in the sensitivity volume for low mass binaries, particularly binary neutron stars mergers

    A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem

    Get PDF
    A quantum system will stay near its instantaneous ground state if the Hamiltonian that governs its evolution varies slowly enough. This quantum adiabatic behavior is the basis of a new class of algorithms for quantum computing. We test one such algorithm by applying it to randomly generated, hard, instances of an NP-complete problem. For the small examples that we can simulate, the quantum adiabatic algorithm works well, and provides evidence that quantum computers (if large ones can be built) may be able to outperform ordinary computers on hard sets of instances of NP-complete problems.Comment: 15 pages, 6 figures, email correspondence to [email protected] ; a shorter version of this article appeared in the April 20, 2001 issue of Science; see http://www.sciencemag.org/cgi/content/full/292/5516/47

    Aging dynamics of ferromagnetic and reentrant spin glass phases in stage-2 Cu0.80_{0.80}C0.20_{0.20}Cl2_{2} graphite intercalation compound

    Full text link
    Aging dynamics of a reentrant ferromagnet stage-2 Cu0.8_{0.8}Co0.2_{0.2}Cl2_{2} graphite intercalation compound has been studied using DC magnetic susceptibility. This compound undergoes successive transitions at the transition temperatures TcT_{c} (8.7\approx 8.7 K) and TRSGT_{RSG} (3.3\approx 3.3 K). The relaxation rate SZFC(t)S_{ZFC}(t) exhibits a characteristic peak at tcrt_{cr} below TcT_{c}. The peak time tcrt_{cr} as a function of temperature TT shows a local maximum around 5.5 K, reflecting a frustrated nature of the ferromagnetic phase. It drastically increases with decreasing temperature below TRSGT_{RSG}. The spin configuration imprinted at the stop and wait process at a stop temperature TsT_{s} (<Tc<T_{c}) during the field-cooled aging protocol, becomes frozen on further cooling. On reheating, the memory of the aging at TsT_{s} is retrieved as an anomaly of the thermoremnant magnetization at TsT_{s}. These results indicate the occurrence of the aging phenomena in the ferromagnetic phase (TRSG<T<TcT_{RSG}<T<T_{c}) as well as in the reentrant spin glass phase (T<TRSGT<T_{RSG}).Comment: 9 pages, 9 figures; submitted to Physical Review

    A small-scale turbulence model

    Get PDF
    A model for the small-scale structure of turbulence is reformulated in such a way that it may be conveniently computed. The model is an ensemble of randomly oriented structured two dimensional vortices stretched by an axially symmetric strain flow. The energy spectrum of the resulting flow may be expressed as a time integral involving only the enstrophy spectrum of the time evolving two-dimensional cross section flow, which may be obtained numerically. Examples are given in which a k(exp -5/3) spectrum is obtained by this method without using large wave number asymptotic analysis. The k(exp -5/3) inertial range spectrum is shown to be related to the existence of a self-similar enstrophy preserving range in the two-dimensional enstrophy spectrum. The results are insensitive to time dependence of the strain-rate, including even intermittent on-or-off strains

    A characterization of graphs of competition number m

    Get PDF
    AbstractIn this note we give a characterization of graphs with competition number less than or equal to m. We also give an alternate proof of a theorem characterizing competition graphs

    Dissecting the spiral galaxy M83: mid-infrared emission and comparison with other tracers of star formation

    Full text link
    We present a detailed mid-infrared study of the nearby, face-on spiral galaxy M83 based on ISOCAM data. M83 is a unique case study, since a wide variety of MIR broad-band filters as well as spectra, covering the wavelength range of 4 to 18\mu m, were observed and are presented here. Emission maxima trace the nuclear and bulge area, star-formation regions at the end of the bar, as well as the inner spiral arms. The fainter outer spiral arms and interarm regions are also evident in the MIR map. Spectral imaging of the central 3'x3' (4 kpc x 4 kpc) field allows us to investigate five regions of different environments. The various MIR components (very small grains, polycyclic aromatic hydrocarbon (PAH) molecules, ionic lines) are analyzed for different regions throughout the galaxy. In the total 4\mu m to 18\mu m wavelength range, the PAHs dominate the luminosity, contributing between 60% in the nuclear and bulge regions and 90% in the less active, interarm regions. Throughout the galaxy, the underlying continuum emission from the small grains is always a smaller contribution in the total MIR wavelength regime, peaking in the nuclear and bulge components. The implications of using broad-band filters only to characterize the mid-infrared emission of galaxies, a commonly used ISOCAM observation mode, are discussed. We present the first quantitative analysis of new H-alpha and 6cm VLA+Effelsberg radio continuum maps of M83. The distribution of the MIR emission is compared with that of the CO, HI, R band, H-alpha and 6cm radio. A striking correlation is found between the intensities in the two mid-infrared filter bands and the 6cm radio continuum. To explain the tight mid-infrared-radio correlation we propose the anchoring of magnetic field lines in the photoionized shells of gas clouds.Comment: 22 pages, 15 figures. Accepted for publication in A&

    Continuing Competence in Selected Health Care Professions

    Get PDF
    Health services professionals are confronting the challenge of maintaining and improving competence over the course of lengthy careers in diverse practice specialties. This article reviews the efforts of a selection of health care professions to ensure lifetime competence and reviews some of the challenges encountered in these efforts. Although each profession has its own issues, significant generic questions are common to all
    corecore